Subsets vs Proper Subsets
Nws yog ib qho tseem ceeb heev kom paub lub ntiaj teb los ntawm kev faib khoom rau hauv pab pawg. Qhov no yog lub hauv paus ntawm lej tswvyim hu ua 'Set Theory'. Cov txheej txheem txheej txheem tau tsim nyob rau hauv lub xyoo pua puv 19, thiab tam sim no, nws yog omnipresent nyob rau hauv lej. Yuav luag tag nrho cov lej tuaj yeem muab tau los ntawm kev teeb tsa kev xav ua lub hauv paus. Kev siv cov txheej txheem txheej txheem yog los ntawm kev ua lej paub daws teeb meem rau txhua yam kev kawm hauv lub ntiaj teb lub cev pom tau.
Subset thiab Proper Subset yog ob lub ntsiab lus uas feem ntau siv hauv Txoj Cai Txheej Txheem los qhia txog kev sib raug zoo ntawm pawg.
Yog hais tias txhua lub hauv paus A kuj yog ib tus tswv cuab ntawm cov teeb B, ces teeb A yog hu ua subset B. Qhov no kuj tuaj yeem nyeem tau li "A muaj nyob hauv B". Ntau yam raug cai, A yog ib feem ntawm B, txhais los ntawm A⊆B yog, x∈A txhais tau tias x∈B.
Txhua qhov teeb tsa nws tus kheej yog subset ntawm tib lub teeb, vim tias, pom tseeb, txhua lub ntsiab lus uas nyob hauv ib txheej kuj yuav nyob hauv tib lub teeb. Peb hais tias "A yog ib qho tsim nyog ntawm B" yog tias, A yog ib feem ntawm B tab sis, A tsis sib npaug rau B. Los qhia tias A yog ib qho tsim nyog ntawm B peb siv lub cim A⊂B. Piv txwv li, lub teeb {1, 2} muaj 4 subsets, tab sis tsuas yog 3 subsets tsim nyog. Vim tias {1, 2} yog ib qho subset tab sis tsis yog qhov tsim nyog ntawm {1, 2}.
Yog tias ib qho teeb meem yog qhov tsim nyog ntawm lwm cov txheej txheem, nws ib txwm yog ib qho ntawm cov txheej txheem ntawd, (piv txwv li yog tias A yog qhov tsim nyog ntawm B, nws txhais tau hais tias A yog ib qho ntawm B). Tab sis muaj peev xwm muaj subsets, uas tsis yog subsets ntawm lawv superset. Yog tias ob pawg sib npaug, ces lawv yog cov subset ntawm ib leeg, tab sis tsis tsim nyog subset ntawm ib leeg.
In luv:
– Yog tias A yog ib feem ntawm B ces A thiab B tuaj yeem sib npaug.
– Yog tias A yog qhov tsim nyog ntawm B ces A tsis tuaj yeem sib npaug rau B.